РАДОСТЬ ЗДОРОВЬЯ - СИЛА КРАСОТЫ

Главная страница

Болезни: от А до Я

Красота

Народная медицина

Медицинская помощь

Диеты

Все о лекарствах и БАД

Новости медицины

О здоровье

Клуб досуга

 

Цитохром

Цитохром р450 ( CYP 450) – так называется большая семья универсальных ферментов организма человека, отвечающих за метаболизм большинства лекарств и других чужеродных органических соединений (ксенобиотиков) .

Метаболизм многих классов лекарственных средств (антигистаминных препаратов, ингибиторов ретровирусной протеазы, бензодиазепинов, блокаторов кальциевых каналов и др.) происходит с участием цитохромов.

Помимо этого, цитохромы обеспечивают различные физиологические процессы, включая биосинтез стероидов и холестерина, метаболизм жирных кислот и обеспечение кальциевого обмена (гидроксилирование витамина D3, составляющее первый этап в образовании кальцитриола).

История цитохрома р450

Цитохром Р450 был открыт в конце 50-х годов ХХ века М. Клингенбергом и Д. Гарфинкелем. Термин «цитохром» ( cito –клетка; с hromos –цвет) появился в 1962 г. как временное название для обнаруженной в клетках окрашенной субстанции.

Как оказалось, различные виды цитохрома Р450 широко распространены в клетках микроорганизмов, растений и млекопитающих. Отсутствуют эти ферменты только у анаэробных бактерий.

Ученые предполагают, что все гены, кодирующие разные виды CYР450, произошли от одного гена-предшественника, который существовал еще два биллиона лет назад. Функция этого «оригинального» гена заключалась в утилизации энергии. На данный момент в природе обнаружено более 1000 различных видов цитохрома CYP 450.

Разнообразие цитохромов

На сегодняшний день у млекопитающих обнаружено около 55 различных видов цитохромов, у растений – более 100.

Благодаря успехам генной инженерии, удалось установить, что ферменты семейства цитохромов выполняют различные функции, что и обусловливает их деление на три основных класса:

  • участвующие в метаболизме лекарственных препаратов и ксенобиотиков;
  • участвующие в синтезе стероидов;
  • участвующие в других важных эндогенных процессах, протекающих в организме.

Классификация цитохромов

Все цитохромы и гены, кодирующие их синтез, называют в соответствии со следующими рекомендациями:

  • в названии цитохрома обязательно указывается корень CYP;
  • в названии гена, кодирующего синтез соответствующего цитохрома, также присутствует CYP , но прописанный наклонным шрифтом;
  • цитохромы разделены на семейства (обозначаются цифрами), подсемейства (обозначаются буквами) и изоформы (обозначаются цифрами, отражающими номер кодирующего гена ).

Например, CYP 2 D 6 относится ко 2-му семейству, подсемейству D , кодируется геном 6. Название же самого гена выглядит как CYP 2 D 6.

Основные цитохромы

Несмотря на разнообразие цитохромов в организме человека, метаболизм лекарственных средств происходит с участием преимущественно ограниченного количества CYP 450. Наиболее распространенными представителями этой группы являются: CYP 1А2, CYP 2С9, CYP 2С19, CYP 2 D 6, CYP 2E1, CYP 3A4.

Эти ферменты катализируют широкий спектр метаболических реакций:

  • один цитохром может метаболизировать несколько лекарственных препаратов, имеющих различную химическую структуру;
  • один и тот же лекарственный препарат может подвергаться воздействию различных CYP 450 в разных органах и системах человеческого организма.

 Двойственность природы цитохромов P450

В большинстве случаев жирорастворимые лекарственные средства и другие химические субстанции трансформируются в водорастворимые метаболиты, которые легче выводятся из организма. Введение гидроксильных групп (благодаря цитохрому Р450) увеличивает полярность молекул и их растворимость, что также способствует их выведению из организма. Почти все ксенобиотики, попадающие в печень, окисляются какой-либо изоформой цитохрома р450.

Однако те же ферменты, катализирующие процессы «очищения», могут активировать инертные химические молекулы до высоко реактивного состояния. Такие молекулы-посредники могут взаимодействовать с белками и ДНК.

Таким образом, воздействие цитохромов р450 может произойти по одному из двух конкурентных путей: метаболической детоксикации либо активации.

Вариабельность действия цитохромов

Для каждого человека характерен свой метаболизм лекарственных веществ, отличающийся от такового других людей. Индивидуальные особенности зависят от генетических факторов, возраста пациента, его пола, состояния здоровья, характера питания, сопутствующей фармакотерапии и т.д.

Генетическая вариабельность лекарственного метаболизма была установлена случайно: стандартные дозы лекарств неожиданно вызывали нестандартные реакции у разных индивидуумов.

Активность ферментов бывает двух (иногда трех) основных видов: интенсивная и слабая (средняя), соответственно метаболизм лекарственных веществ может происходить быстро и медленно.

Цитохромы и метаболизм лекарственных средств

Цитохром CYP 1А2 участвует в метаболизме многих лекарств, включая эуфиллин и кофеин. Активность этого фермента повышается под воздействием химических веществ, попадающих в организм человека во время курения.

Цитохром CYP 2А6 играет важную роль в метаболизме кумарина (непрямой антикоагулянт) и никотина.

Цитохром CYP 2С9 вовлечен в метаболизм фенитоина, толбутамида, варфарина. Если в структуре гена, кодирующего синтез данного цитохрома, изменяется хотя бы одна аминокислота, то нарушается его ферментативная активность. Ферментная недостаточность этого цитохрома обусловливает врожденную предрасположенность к интоксикации фенитоином и к осложнениям в результате терапии варфарином.

Цитохром CYP 2С19 участвует в метаболизме омепразола, диазепама, имипрамина. Однако клиническое значение полиморфизма этого фермента остается спорным. Эффективные дозы многих препаратов, метаболизируемых CYP 2С9, столь далеки от токсических, что потенциальные отклонения в активности цитохрома CYP 2С9 не играют значительной роли.

Цитохром CYP 2 D 6 является примером генотипических различий среди разных этнических групп. В 70-х годах прошлого столетия изучали фармакокинетику антигипертензивного препарата дебризохина и антиаритмика спартеина. Получены следующие результаты: при общей тенденции к сверхбыстрому метаболизму дебризохина, среди лиц европеоидной расы медленный метаболизм наблюдался в 5–10% случаев, среди японцев этот показатель составил менее 1%.

Препараты, метаболизируемые CYP2D6 ( b -блокаторы, антиаритмики, психоаналептики, антидепрессанты и наркотические анальгетики), имеют узкий терапевтический индекс, т.е. между дозой, необходимой для достижения лечебного эффекта, и токсической дозой существует небольшая разница. В такой ситуации индивидуальные отклонения в метаболизме лекарств могут сыграть драматическую роль: повышение концентрации последнего до токсического уровня, либо снижение до потери эффективности.

История применения пергексилина (Австралия) ярко продемонстрировала огромное значение полиморфизма CYP2D6. После первого опыта назначений препарат был изъят из арсенала средств для лечения стенокардии вследствие высокой гепато- и нефротоксичности. Но в настоящее время пергексилин опять применяется и признан высокоэффективным средством, поскольку является токсичным только для пациентов со слабым метаболизмом CYP2D6. Безопасность назначения пергексилина обеспечивается предварительным определением индивидуального уровня этого цитохрома.

Цитохром CYP 3А4 предположительно метаболизирует около 60% всех лекарственных веществ. Это основной цитохром печени и кишечника (от общего количества цитохромов он составляет 60%). Активность его может повышаться под влиянием рифампицина, фенобарбитала, макролидов и стероидов.

Ингибирование метаболизма лекарственных средств

Ингибирование метаболизма лекарственных средств является наиболее частой причиной клинически значимого медикаментозного взаимодействия, что приводит к нежелательному повышению концентрации препарата в крови. Чаще всего это происходит, когда два различных лекарства конкурируют между собой за возможность быть связанными с одним ферментом. Лекарство, «проигравшее» в этой конкурентной «борьбе», теряет возможность адекватно метаболизироваться и избыточно накапливается в организме. Отрадно, что существует не так много препаратов, обладающих характеристиками выраженного ингибитора. Характерными ингибиторами являются циметидин, эритромицин, кетоконазол и хинидин. Среди более новых препаратов потенциальными ингибиторными свойствами обладают селективные ингибиторы обратного захвата серотонина и ингибиторы протеаз.

Скорость ингибирования зависит от фармакокинетических свойств «конфликтующих» препаратов. Если и ингибитор, и лекарство-субстрат имеют короткий период полураспада (например, циметидин и ингибитор его метаболизма – теофиллин), взаимодействие окажется максимальным на 2–4-й день. Столько же времени потребуется для прекращения эффекта взаимодействия.

В случае одновременного применения варфарина и амиодарона для прекращения ингибиторного эффекта потребуется 1 мес и более, что связано с длительным периодом полураспада последнего.

Несмотря на то, что ингибирование цитохромопосредованного метаболизма является большой проблемой, в клинической практике иногда создаются условия, позволяющие целенаправленно использовать этот феномен. Антивирусный препарат саквинавир имеет очень низкую биодоступность, что связано с его интенсивным метаболизмом цитохромом CYP 3A4. Биодоступность лекарства при приеме внутрь составляет всего 4%. Одновременное введение родственного препарата ритинавира, подавляющего активность цитохрома, приводит к 50-кратному повышению плазменной концентрации саквинавира, что позволяет достичь терапевтического эффекта.

Индукция метаболизма лекарственных средств

Индукция метаболизма возникает, когда какой-либо препарат стимулирует синтез ферментов, вовлеченных в метаболизм другого лекарства (или уменьшает естественное разрушение этих ферментов).

Наиболее хорошо известным идуктором цитохрома является рифампицин, который повышает уровни CYP 3A4 и CYP 2С в печени, в результате чего интенсифицируется метаболизм целого ряда лекарственных препаратов (таблица).

Вполне обоснованным является предположение, что индукторы цитохромов уменьшают эффективность лекарств-субстратов. Однако существует и другая сторона этого явления. Внезапная отмена лекарства-индуктора (или прекращение воздействия индуктора из окружающей среды) может неожиданно привести к сильному повышению плазменной концентрации препарата, который ранее интенсивно метаболизировался. Примером может служить ситуация, когда курильщики, привыкшие к постоянному употреблению кофе, решают внезапно бросить курить, в результате чего снижается активность CYP 1А2, а в плазме крови повышается концентрация кофеина. Это может усугублять выраженность синдрома отмены: головную боль и возбуждение.

Взаимодействие с пищей

В результате исследования, проведенного в 1991 г., было установлено, что один стакан грейпфрутового сока вызывает трехратное повышение плазменного уровня фелодипина. При этом другие соки не вызывали подобного эффекта. Предполагается, что компоненты грейпфрута – флавониды или фуранокоумарин – подавляют метаболизм фелодепина в кишечнике, опосредованного цитохромом CYP 3А4.

Фармакогеномика и перспективные направления

Науку, изучающую генетически определенную реакцию организма на лекарственные препараты, с недавнего времени стали называть фармакогеномикой. Развитие этой науки позволит точно предсказывать индивидуальный ответ организма на определенное лечение, а также выявлять пациентов с высоким риском развития токсических реакций.

Таблица. Основные виды цитохромов р450 у человека

Цитохром

Субстраты, на которые осуществляется воздействие

Ингибитор

Индуктор

CYP 1А2

Амитриптилин, кофеин, кломипрамин, имипрамин, клозапин, мексилетин, эстрадиол, парацетамол, пропранолол, такрин, теофиллин, R -варфарин

Циметидин, флувоксамин, фторхинолоновые антибиотики (ципрофлоксацин, норфлоксацин), грейпфрутовый сок

Омепразол, фенобарбитал, фенитоин, полициклические ароматические гидрокарбонаты (например шашлык), курение сигарет

CYP2С9

Диклофенак, индометацин, лосартан, напроксен, фенитоин, пироксикам, толбутамид, S -варфарин

Амиодарон, хлорамфеникол, циметидин,

флуконазол, флуоксетин, изониазид, омепразол, сертралин, сульфинпиразон

Рифампицин

CYP2С19

Кломипрамин, клозапин, диазепам, имипрамин, лансопразол, омепразол, фенитоин, пропранолол

Флуоксетин, флувоксамин, изониазид, омепразол, сертралин

Рифампицин

CYP2 D6

Амитриптилин, хлорпромазин, кломипрамин, клозапин, кодеин, дезипрамин, декстрометорфан, доксепин, флуоксетин, галоперидол, имипрамин, лабеталол, метадон, метопролол, прокаинамид, прометазин, пропафенон, пропранолол, тиоридазин, тимолол

Амиодарон, циметидин, галоперидол, мибефрадил, хинидин, пропафенон, все ингибиторы обратного захвата серотонина

 

CYP2 E1

Кофеин, этанол, парацетамол, теофиллин

Циметидин, дисульфирам

Этанол, изониазид

CYP3 A4

Амиодарон, амитриптилин, аторвастатин, бупренорфин, карбамазепин, кларитромицин, кломипрамин, клоназепам, кокаин, кортизол, циклофосфамид, циклоспорин, дексаметазон, дигитоксин, дилтиазем, диазепам, доксорубицин, эритромицин, фелодипин, фентанил, имипрамин, кетоконазол, лоратадин, миконазол, мидазолам, нифедипин, эстрадиол, омепразол, пропафенон, хинидин, симвастатин, теофиллин, верапамил, винкристин, варфарин

Амиодарон, каннабиноиды, циметидин, кларитромицин, клотримазол, дилтиазем, эритромицин, грейпфрутовый сок, кетоконазол, метронидазол, миконазол

Карбамазепин, глюкокортикоиды, фенитоин, рифампицин, сульфадимидин

 

 

Какие витамины любит кожа?

ТОП-10 статей:

Целительная спирулина

Противовирусные препараты при ОРВИ

Пища и эффективность препаратов

Витамины для детей

Группы лекартвенных средств

БАД и лекарственные средства

НПВС для внутреннего и наружного применения

Лекарства и печень

Лактовит форте

Ноотропные препараты

Общий анализ крови

Метод Фолля